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Why Hardware Security?

• Software complexity
– OSes and hypervisors are too complex to be trusted to be bug free
– Who can trust OSes and hypervisors?! Secure processor architectures 

• Microarchitectural side-channel attacks
– Sharing with other users gives them the ability to discover our secrets

• Shared caches, shared processors (branch predictors, pipelines, etc.)

• Physical monitoring attacks and physical side-channel attacks
– Users cannot physically protect their computing hardware

• Hardware is often in the cloud
• Hardware is embedded and remote (Internet-of-Things, IoT)
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Outline of the Next Three Lectures

1. Microarchitectural Side-Channel Attacks (this lecture)
– A set of extremely powerful attacks which intimately depend on the 

microarchitectural features of our processor (= 1st part of CS-470)

2. Trusted Execution Environments
– First attempts to develop architectural features to mitigate some of the most 

severe threats to isolation and confidentiality

3. Physical Side-Channel Attacks
– Possibly the most elusive class of attacks
– So far of moderate concern for general purpose computing but extremely critical 

for embedded applications (e.g., smart cards) and devices not physically located 
with the owner/user (e.g., IoT)
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Outline of This Lecture

1. Basic Definitions
2. Attacks on Memory to Compromise Integrity (Rowhammer)
3. Covert Channels and Side-Channel Attacks
4. Attacks on Timing to Break Isolation and Confidentiality (Timing Side-

Channel Attacks)
5. Attacks on Memory to Break Isolation and Confidentiality (Cache Side-

Channel Attacks)
6. Combined Attacks to Break Isolation and Confidentiality (Meltdown)
7. Combined Attacks to Break Isolation and Confidentiality (Spectre)
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1
Basic Definitions
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Threat Model

Specification of the threats that a system is protected against
• Trusted Computing Base: what is the set of trusted hardware 

and software components
• Security properties: what the trusted computing base is 

supposed to guarantee
• Attacker assumptions: what a potential attacker is assumed 

capable of
• Potential vulnerabilities: what an attacker might be able to gain
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Classic Security Properties

• Confidentiality
 prevent the disclosure of secret information

• Integrity: 
 prevent the modification of protected information

• Availability
 guarantee the availability of services and systems

We will also speak of isolation, that is the possibility to prevent any interaction between 
users and processes, often used to guarantee confidentiality and integrity
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2
Attacks on Memory to Compromise Integrity

(Rowhammer) 
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Dynamic Random-Access Memory

• DRAMs are the densest (and thus cheapest) form of 
random-access semiconductor memory

• DRAMs store information as charge in small capacitors
part of the memory cell

• First patented in 1968 by Robert Dennard, scaled 
amazingly over decades and was somehow an 
important ingredient of the progress of computing 
systems

• Charge leaks off the capacitor due to parasitic 
resistances  every DRAM cell needs a periodic 
refresh (e.g., every ~60 ms) lest it forgets information ©
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Apparently Only a Reliability Issue
• To increase density (i.e., reduce cost) memory cells have become 

incredibly small ( small storage capacitance, smaller noise 
margin) and word lines got extremely close to each other (
larger crosstalk capacitive coupling)

• Frequent activation of word lines neighbouring particular cells 
between refreshes may flip the cell states due to various forms of 
capacitive coupling

• Disturbance errors have been a known design issue of DRAMs 
since ever, but failure in commercial DDR3 chips was 
demonstrated in 2014

word line
N-1

word line
N+1

Rowhammer ©
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A Remarkably Simple Code
X maps

here

Y maps
here

Rowhammer

code1a:
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
mfence
jmp code1a

• “mov” instructions activate neighbouring rows
• “clflush” unprivileged x86 instructions flush the cash from the 

values of X and Y (so that future accesses are misses) and “mfence” 
roughly waits for the flush

• Repeat as quickly as possible
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An Opportunity for Attacks

• Rowhammer effectively violates memory protection (“if I can read, I can also write”) 
which is a key ingredient to privilege separation across processes

• By accessing locations in neighbouring rows one could gain unrestricted memory 
access and privilege escalation
– Allocate large chunks of memory, try many addresses, learn weak cells
– Release memory to the OS
– Repeatedly map a file with RW permissions to fill memory with page table entries (PTEs)
– Use Rowhammer to flip (semirandomly) a bit in one of these PTEs; it will now point to the wrong 

physical page
– Chances are that this physical page contains PTEs too, so now accessing that particular mapping of 

the file (RW) actually modifies the PTEs, not the file
– Attacker can arbitrarily change PTEs and memory protection is gone

• Not that simple in practice, tons of difficulties, but people managed to make it work!
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Mitigations

• Error Correcting Codes (ECC) may fail to detect multiple flips
• Shortening the refresh intervals mitigates but does not solve 

problems; implemented in firmware by some vendors
• Hard or impossible to avoid altogether without changes in the 

DRAMs
• Increase electrical noise margins (costly!)
• Count inside the DRAM the number of row activations within a 

time window, identify potential victims, and refresh
– Introduced in DDR4 products but not in the JEDEC standard
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An Aside on DRAMs: Data Remanence

• A completely different problem with storing data on capacitors: cells may 
leak information quickly in the worst case but very many do not leak 
much in typical conditions

• Lowering significantly the device temperature (e.g., use spray refrigerants) 
makes most cells retain charge for long time (seconds to minutes)

• Coldboot attacks:
– Cool a working DRAM device
– Switch off
– Move the device to another computer or reboot a malicious OS
– Read content (passwords, secret keys, etc.)
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3
Covert Channels and Side-Channel Attacks
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Covert Channels

• “A covert channel is an intentional communication between a 
sender and a receiver via a medium not designed to be a 
communication channel” (Szefer, 2019)

• If we isolate a critical process inside a virtual machine (or an 
enclave, see later), a covert channel may allow a rogue 
programme inside of the isolated process (a Trojan horse) to 
leak a secret to some malicious receiver without anyone to 
notice (no conventional communication channel visible)
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Side Channels Attacks

• Attacks where the sender is the unsuspecting victim of the 
attack, who is unknowingly transmitting information through a 
covert channel, and the receiver is the attacker

• Sending (or leaking) information is a side effect of the normal 
operation of the victim, either because of the hardware 
implementation of the system or because of the software 
implementation of the victim—or both
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Covert- and Side-Channels

System State
(timing, cache, branch predictors, pipelines,…) 

Sender / Victim 
Process

Receiver / Attacker 
Process

Physical Emanation
(power consumption, temperature, electromagnetic waves,…)

Measuring 
Instrument

Microarchitectural

Physical
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Covert- and Side-Channels

• Microarchitectural
– Based on the existence of microarchitectural state, that is state not 

(normally) visible to the programmer—because architectural state is 
known and thus, apart from bugs, inherently protected!

– Based on the sharing of hardware components featuring such 
microarchitectural state

– Physical replication and isolation may solve the problem

• Physical
– Based on the physical nature of the computing system
– Potentially more difficult to fight, but also harder to exploit
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4
Attacks on Timing to Break Isolation and Confidentiality

(Timing Side-Channel Attacks)
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Execution Time Reveals Something on Data

Compare

with

bool insecureStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
for (size_t i = 0; i < length; i++)

if (ca[i] != cb[i])
return false;

return true;
}

bool constantTimeStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
bool result = true;
for (size_t i = 0; i < length; i++)

result &= ca[i] == cb[i];
return result;

}

Return as soon as a difference is found

Record the difference and return 
always after checking the entire string
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Blinding through Constant Time

• Not always easy:
– May need to fight compiler optimizations

• Time is typically made constant by provably unnecessary computation

– Variability may arise from microarchitectural phenomena
• Data-dependent instruction latency
• Virtual memory and caches
• Instruction scheduling
• …

• In a sense, most if not all of the attacks discussed in the 
following slides are ultimately timing attacks of specific nature
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Attacks on Memory to Break Isolation and Confidentiality

(Cache Side-Channel Attacks)
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Cache Side-Channel Attacks

• Oldest and perhaps most powerful example of microarchitectural side-
channel (cache shared but not architecturally visible)
– Evoked since 1992 but first fully demonstrated in 2005

• Attacker can differentiate hits and misses using some high-resolution 
timing measurement (e.g., processor cycles)

• Victim memory accesses (= where the victim loads or stores) reveal 
secrets
– E.g., D$ accesses to an AES sbox() depend on the secret key
– E.g., I$ accesses to different RSA functions depend on the secret key

• Attacker can run victim code
– E.g., write to a file into an encrypted volume, send packets through a VPN interface
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Evict+Time

4-way set-associative

8 sets

Does the victim access location X (in set Y)?

1. Run the victim
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Evict+Time

Does the victim access location X (in set Y)?

1. Run the victim
2. Run the victim and time it

• fast because data are in cache

4-way set-associative

8 sets
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Evict+Time

Does the victim access location X (in set Y)?

1. Run the victim
2. Run the victim and time it

• fast because data are in cache
3. Evict content from set Y (evict)

• by replacing with attacker content
• making sure to pollute all ways

4-way set-associative

8 sets
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Evict+Time

Does the victim access location X (in set Y)?

1. Run the victim
2. Run the victim and time it

• fast because data are in cache
3. Evict content from set Y (evict)

• by replacing with attacker content
• making sure to pollute all ways

4. Run the victim and time it (time)
• if step 4 takes longer than 2, the victim 

accessed something in set Y

4-way set-associative

8 sets
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Evict+Time

• Problem
– Relies on measuring the precise execution time of the victim
– Repeats the same execution, so no variability in the executed code
– Yet, timing may be affected by environmental issues

• System call
• Branch prediction
• Instruction scheduling

– It is small noise but may be comparable to the quantity being 
measured

– Repeat many times
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Evict+Time

• Results affected by noise, but noise can usually be controlled by repeating 
the experiment a sufficient number of times

Address tested for possible access

Byte of the 
plaintext
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Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and 

time each set
• fast because data are in cache

4-way set-associative

8 sets
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Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and 

time each set
• fast because data are in cache

3. Run the victim

4-way set-associative

8 sets
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Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and 

time each set
• fast because data are in cache

3. Run the victim
4. Read all pieces of data for all sets and 

time each set (probe)
• if step 4 takes longer than 2 for set Y, the 

victim accessed something in set Y

4-way set-associative

8 sets
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Prime+Probe

• Key advantage: now the attacker times their own code and not the 
victim’s code, arguably allowing better control of measurement noise

Sets accessed

Byte of the 
plaintext
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Candidate Scores

• Many attacks to cryptographic algorithms involve trying multiple 
plaintexts and/or key hypotheses and distinguishing between most likely 
and least likely over many attempts

0x50…0x5f = 80…96 0x5…

Key hypothesis

Score

So
ur

ce
: O

sv
ik

et
 a

l.,
 C

T-
RS

A’
06



3
6

Cache Tag Index Offset

Cache Tag Index Offset

Cache Hierarchy

typ. 6b

L1

Last Level Cache

max 6b

typ. > 10b

What about Large Caches?

Virtual Page Offset

Physical Page Offset

Page tableVirtual Memory

typ. 12b

Virtual addresses 
cannot control the 

cache set to use
in caches larger than L1
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Why an Attacker Cares about LLC?
• The attacker and the victim may be on different cores
• Also more index bits (= more sets) lead to better resolution (e.g., 1/2048 vs. 1/64)

Intel Nehalem

Inclusion

• Inclusion property
– Whatever is in L1D is certainly 

in L2; whatever is in L2 is 
certainly in L3, etc.

– Useful to maintain coherence

• In particular
– If the attacker evicts something 

in L1D, it is evicted also in L2 
and L3

Attacker
Victim
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Huge Virtual Pages

• Takes advantage of the hardware support for large pages
– Large pages More memory waste but more efficient management (e.g., less TLB misses) in 

applications with large data footprint

• Attacker needs administrator rights to set large pages
– Not a problem, because they have them in their guest OS

Cache Tag 11-bit Index Offset Last Level Cache

Page 12-bit Offset 4kB pages

Page 21-bit Offset

Page 30-bit Offset

2MB pages

1GB pages

6 bits
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Prime+Probe and Multiple Levels

1. Fill set (prime)
2. Run the victim
3. Find misses (probe)

L1

1. Fill set (prime)
2. Run the victim
3. Find misses (probe)

LLC L1

1. Fill set in LLC (prime)
2. Fill set (= evict) in L1 (reprime)

• Do not evict from LLC!
3. Run the victim
4. Find misses (probe)

LLC L1

Cache Tag Index Offset LLC

Cache Tag Index Offset L1

6 bits

11 bits

Reprime with elements in the 
same set in L1 but in a 

different set in LLC

Differentiate L1 from LLC with these bits

Probe actually may probe
L1 instead of LLC
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Asynchronous Attacker and Victim?

• The example is here a Flush+Reload
attack, similar to Prime+Probe but uses 
the clflush instruction of x86 to evict a 
specific cache line and depends on 
virtual machine page deduplication (if 
two users load the same executable or 
libraries, only one is kept in memory)
– Attacker and victim use different virtual 

addresses in different virtual machines, 
but the physical address is the same

• Tracks accesses to code to infer the 
internal state of the victim

The attacker runs in a virtual 
machine and the victim in another 
one, so no synchronization possible
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Asynchronous Attacker and Victim?

The execution sequence Square-Reduce-Multiply-Reduce 
reveals the secret (the victim was processing a set bit)
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Possible Mitigations
• Huge amount of research

– Hardware solutions
• Various forms of partitioning and randomization
• Practically none is truly effective and efficient, and thus viable for general use

– Generic software solutions
• Clumsy, difficult to generalize, costly, not always effective
• Cache colouring  OS uses physical page allocation to reserve sets for some processes

– Application-specific solutions
• Possibly the safest option

Cache Tag Index Offset

Physical Page Page Offset

5 bits

Give a critical application only physical pages with a particular 
combination of these bits (“colour”) and nobody else pages of that 

colour, thus effectively partitioning the sets across applications
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6
Combined Attacks to Break Isolation and Confidentiality

(Meltdown)
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Meltdown

• Catastrophic attack making it possible to read all memory of a process
(including protected kernel data)

• By product of the way some microarchitectural features are implemented 
(e.g., AMD x86 implementations are per chance resistant to Meltdown)

• Exploits race condition between memory access and protection checks
– Ultimately exploits the microarchitectural nature of caches (something is left in the 

cache upon exception because the cache is not part of the architectural state)

The attacker executes a forbidden access and speculatively 
uses the result to obtain nonarchitectural side-effects that 
reveal the secrets before the forbidden access is squashed
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Mapping Kernel Pages in User Space

• Most OSes map physical kernel memory pages into every user’s virtual 
memory space

• Minimizes the cost of some exceptions (e.g., fast interrupt handling, less 
TLB flushes)

• Of course, access is protected—can be read only in kernel mode
• But everyone can address them!

Kernel User Process A User Process B

Physical Memory
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Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects 
that reveal the secrets

before the forbidden access is squashed

Attacker: *wherever;

We try to read anything 
we want, provided that it 
is mapped in our virtual 

addressing space (but the 
value will be removed 
from the ROB and an 

exception thrown)
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Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects 
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
secretAttacker:

Before the exception is 
thrown something else will 

be executed
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Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects 
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
array[secret * 4096];Attacker:

If we use the abusively loaded value 
(secret) for a legitimate memory access, 

trace of it will remain in the cache
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Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects 
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
array[secret * 4096];

Make sure that a secret the 
attacker cannot read leaves 
a trace before it is cancelled

Perform a
Prime+Probe
cache attack
to learn the 

secret

Attacker:

Renamed register which 
will never be committed
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0
0
0
0
1

0

Register Address ValueTag

0x627f ba5a

FP3 ???

$r4

0x12340x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 0x123 40000x1000 0010

0 MEM3 ???0x1000 0018

head

0 0xf123 40000x1000 0014 $r3

$r3

$r3

$f3

$r9

The ROB View

0x1000000c: lw $r3, 0($r5)
0x10000010: sll $r3, $r3, 12
0x10000014: add $r3, $r3, $r6
0x10000018: lw $r4, 0($r3)

wherever
secret

array[]

The protection violation has 
been discovered and is set to 

raise soon an exception…

…yet the secret value is in the 
ROB and has been used already 

to affect the cache state
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Does It Affect All Processors?

Processors Affected?
Intel x86 Most processors since 1995
AMD x86 None

ARM Cortex-A75
Apple ARM Most processors
IBM POWER POWER8 and POWER9

VIA x86 Most processors
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Possible Mitigations
• The obvious proper solution is to change the processor design

– Test privilege level before making the result of a speculative access available
– Per chance, AMD does this already

• The other line of mitigation is to better isolate user space and kernel space memory
– In Linux, Kernel page-table isolation (KPTI); similar in other OSs
– Performance penalty in Linux around 5-10%, up to 30%

User space

Kernel space

User and kernel mode

User space

Kernel space

User mode

User space

Kernel space

Kernel mode
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7
Combined Attacks to Break Isolation and Confidentiality

(Spectre)
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Spectre

• Another catastrophic attack making it possible to read all memory
• Addresses another shared resource: branch predictors

– For simplicity, branch predictors are not thread specific (see also Simultaneous 
Multithreading lecture)

• Exploits side effects of (mispredicted) speculative execution
– Mispeculation does not affect the architectural state (of course!)…
– …but it may affect microarchitectural structures (e.g., caches)

Get the victim to speculatively execute leaky code 
whose nonarchitectural side-effects reveal the secrets
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Spectre

② speculatively execute 
① leaky code 

with ③ nonarchitectural side-effects 
that reveal the secrets

array1[x]Victim:

With an appropriate value 
for x we can read 
anything we want
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Spectre

② speculatively execute 
① leaky code 

with ③ nonarchitectural side-effects 
that reveal the secrets

array1[x]
if (x < array1_size)

array1[x]Victim:

If we can get the processor 
to mispredict the condition,

the access will be speculatively performed
(but the value will be removed from the ROB)
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Spectre

② speculatively execute 
① leaky code 

with ③ nonarchitectural side-effects 
that reveal the secrets

if (x < array1_size)
y = array2[array1[x] * 4096];array1[x]

if (x < array1_size)
array1[x]Victim:

If we use the speculatively loaded value 
(array1[x]) for a memory access, trace of 

it will remain in the cache
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Spectre

② speculatively execute 
① leaky code 

with ③ nonarchitectural side-effects 
that reveal the secrets

if (x < array1_size)
y = array2[array1[x] * 4096];array1[x]

if (x < array1_size)
array1[x]Victim:

Force the 
victim to 

mispeculate
Perform a

Prime+Probe
cache attack
to learn the 

secret
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Possible Mitigations

• Hardware
– Disable speculative execution
– Separate branch predictors per process/thread

• General software approaches
– Run only an application per processor

• Partial and application-specific software approaches
– Add serialization instructions between branches and loads
– Make it impossible through JavaScript in browsers

“As [Spectre] is not easy to fix, it will haunt us for quite some time.”

https://meltdownattack.com/
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Conclusions

• Large catalogue of powerful primitive attacks exploiting microarchitectural state
• Real attacks are a composition of primitives (A  B  C…)

• Fairly difficult to fight them comprehensively, without hardware support, and without 
a serious loss of performance

Matryoshka
Dolls
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