
1

Advanced
Computer Architecture

—
Part III: Hardware Security

Microarchitectural Side-Channel Attacks

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Why Hardware Security?

• Software complexity
– OSes and hypervisors are too complex to be trusted to be bug free
– Who can trust OSes and hypervisors?! Secure processor architectures

• Microarchitectural side-channel attacks
– Sharing with other users gives them the ability to discover our secrets

• Shared caches, shared processors (branch predictors, pipelines, etc.)

• Physical monitoring attacks and physical side-channel attacks
– Users cannot physically protect their computing hardware

• Hardware is often in the cloud
• Hardware is embedded and remote (Internet-of-Things, IoT)

3

Outline of the Next Three Lectures

1. Microarchitectural Side-Channel Attacks (this lecture)
– A set of extremely powerful attacks which intimately depend on the

microarchitectural features of our processor (= 1st part of CS-470)

2. Trusted Execution Environments
– First attempts to develop architectural features to mitigate some of the most

severe threats to isolation and confidentiality

3. Physical Side-Channel Attacks
– Possibly the most elusive class of attacks
– So far of moderate concern for general purpose computing but extremely critical

for embedded applications (e.g., smart cards) and devices not physically located
with the owner/user (e.g., IoT)

4

Outline of This Lecture

1. Basic Definitions
2. Attacks on Memory to Compromise Integrity (Rowhammer)
3. Covert Channels and Side-Channel Attacks
4. Attacks on Timing to Break Isolation and Confidentiality (Timing Side-

Channel Attacks)
5. Attacks on Memory to Break Isolation and Confidentiality (Cache Side-

Channel Attacks)
6. Combined Attacks to Break Isolation and Confidentiality (Meltdown)
7. Combined Attacks to Break Isolation and Confidentiality (Spectre)

5

1
Basic Definitions

6

Threat Model

Specification of the threats that a system is protected against
• Trusted Computing Base: what is the set of trusted hardware

and software components
• Security properties: what the trusted computing base is

supposed to guarantee
• Attacker assumptions: what a potential attacker is assumed

capable of
• Potential vulnerabilities: what an attacker might be able to gain

7

Classic Security Properties

• Confidentiality
 prevent the disclosure of secret information

• Integrity:
 prevent the modification of protected information

• Availability
 guarantee the availability of services and systems

We will also speak of isolation, that is the possibility to prevent any interaction between
users and processes, often used to guarantee confidentiality and integrity

8

2
Attacks on Memory to Compromise Integrity

(Rowhammer)

9

Dynamic Random-Access Memory

• DRAMs are the densest (and thus cheapest) form of
random-access semiconductor memory

• DRAMs store information as charge in small capacitors
part of the memory cell

• First patented in 1968 by Robert Dennard, scaled
amazingly over decades and was somehow an
important ingredient of the progress of computing
systems

• Charge leaks off the capacitor due to parasitic
resistances  every DRAM cell needs a periodic
refresh (e.g., every ~60 ms) lest it forgets information ©

 W
ik

ip
ed

ia
, D

yn
am

ic
 ra

nd
om

-a
cc

es
s m

em
or

y

1
0

Apparently Only a Reliability Issue
• To increase density (i.e., reduce cost) memory cells have become

incredibly small ( small storage capacitance, smaller noise
margin) and word lines got extremely close to each other (
larger crosstalk capacitive coupling)

• Frequent activation of word lines neighbouring particular cells
between refreshes may flip the cell states due to various forms of
capacitive coupling

• Disturbance errors have been a known design issue of DRAMs
since ever, but failure in commercial DDR3 chips was
demonstrated in 2014

word line
N-1

word line
N+1

Rowhammer ©
 W

ik
ip

ed
ia

, D
yn

am
ic

 ra
nd

om
-a

cc
es

s m
em

or
y

1
1

A Remarkably Simple Code
X maps

here

Y maps
here

Rowhammer

code1a:
mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
mfence
jmp code1a

• “mov” instructions activate neighbouring rows
• “clflush” unprivileged x86 instructions flush the cash from the

values of X and Y (so that future accesses are misses) and “mfence”
roughly waits for the flush

• Repeat as quickly as possible

©
 W

ik
ip

ed
ia

, D
yn

am
ic

 ra
nd

om
-a

cc
es

s m
em

or
y

1
2

An Opportunity for Attacks

• Rowhammer effectively violates memory protection (“if I can read, I can also write”)
which is a key ingredient to privilege separation across processes

• By accessing locations in neighbouring rows one could gain unrestricted memory
access and privilege escalation
– Allocate large chunks of memory, try many addresses, learn weak cells
– Release memory to the OS
– Repeatedly map a file with RW permissions to fill memory with page table entries (PTEs)
– Use Rowhammer to flip (semirandomly) a bit in one of these PTEs; it will now point to the wrong

physical page
– Chances are that this physical page contains PTEs too, so now accessing that particular mapping of

the file (RW) actually modifies the PTEs, not the file
– Attacker can arbitrarily change PTEs and memory protection is gone

• Not that simple in practice, tons of difficulties, but people managed to make it work!

1
3

Mitigations

• Error Correcting Codes (ECC) may fail to detect multiple flips
• Shortening the refresh intervals mitigates but does not solve

problems; implemented in firmware by some vendors
• Hard or impossible to avoid altogether without changes in the

DRAMs
• Increase electrical noise margins (costly!)
• Count inside the DRAM the number of row activations within a

time window, identify potential victims, and refresh
– Introduced in DDR4 products but not in the JEDEC standard

1
4

An Aside on DRAMs: Data Remanence

• A completely different problem with storing data on capacitors: cells may
leak information quickly in the worst case but very many do not leak
much in typical conditions

• Lowering significantly the device temperature (e.g., use spray refrigerants)
makes most cells retain charge for long time (seconds to minutes)

• Coldboot attacks:
– Cool a working DRAM device
– Switch off
– Move the device to another computer or reboot a malicious OS
– Read content (passwords, secret keys, etc.)

1
5

3
Covert Channels and Side-Channel Attacks

1
6

Covert Channels

• “A covert channel is an intentional communication between a
sender and a receiver via a medium not designed to be a
communication channel” (Szefer, 2019)

• If we isolate a critical process inside a virtual machine (or an
enclave, see later), a covert channel may allow a rogue
programme inside of the isolated process (a Trojan horse) to
leak a secret to some malicious receiver without anyone to
notice (no conventional communication channel visible)

1
7

Side Channels Attacks

• Attacks where the sender is the unsuspecting victim of the
attack, who is unknowingly transmitting information through a
covert channel, and the receiver is the attacker

• Sending (or leaking) information is a side effect of the normal
operation of the victim, either because of the hardware
implementation of the system or because of the software
implementation of the victim—or both

1
8

Covert- and Side-Channels

System State
(timing, cache, branch predictors, pipelines,…)

Sender / Victim
Process

Receiver / Attacker
Process

Physical Emanation
(power consumption, temperature, electromagnetic waves,…)

Measuring
Instrument

Microarchitectural

Physical

1
9

Covert- and Side-Channels

• Microarchitectural
– Based on the existence of microarchitectural state, that is state not

(normally) visible to the programmer—because architectural state is
known and thus, apart from bugs, inherently protected!

– Based on the sharing of hardware components featuring such
microarchitectural state

– Physical replication and isolation may solve the problem

• Physical
– Based on the physical nature of the computing system
– Potentially more difficult to fight, but also harder to exploit

2
0

4
Attacks on Timing to Break Isolation and Confidentiality

(Timing Side-Channel Attacks)

2
1

Execution Time Reveals Something on Data

Compare

with

bool insecureStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
for (size_t i = 0; i < length; i++)

if (ca[i] != cb[i])
return false;

return true;
}

bool constantTimeStringCompare(const void *a, const void *b, size_t length) {
const char *ca = a, *cb = b;
bool result = true;
for (size_t i = 0; i < length; i++)

result &= ca[i] == cb[i];
return result;

}

Return as soon as a difference is found

Record the difference and return
always after checking the entire string

2
2

Blinding through Constant Time

• Not always easy:
– May need to fight compiler optimizations

• Time is typically made constant by provably unnecessary computation

– Variability may arise from microarchitectural phenomena
• Data-dependent instruction latency
• Virtual memory and caches
• Instruction scheduling
• …

• In a sense, most if not all of the attacks discussed in the
following slides are ultimately timing attacks of specific nature

2
3

5
Attacks on Memory to Break Isolation and Confidentiality

(Cache Side-Channel Attacks)

2
4

Cache Side-Channel Attacks

• Oldest and perhaps most powerful example of microarchitectural side-
channel (cache shared but not architecturally visible)
– Evoked since 1992 but first fully demonstrated in 2005

• Attacker can differentiate hits and misses using some high-resolution
timing measurement (e.g., processor cycles)

• Victim memory accesses (= where the victim loads or stores) reveal
secrets
– E.g., D$ accesses to an AES sbox() depend on the secret key
– E.g., I$ accesses to different RSA functions depend on the secret key

• Attacker can run victim code
– E.g., write to a file into an encrypted volume, send packets through a VPN interface

2
5

Evict+Time

4-way set-associative

8 sets

Does the victim access location X (in set Y)?

1. Run the victim

2
6

Evict+Time

Does the victim access location X (in set Y)?

1. Run the victim
2. Run the victim and time it

• fast because data are in cache

4-way set-associative

8 sets

2
7

Evict+Time

Does the victim access location X (in set Y)?

1. Run the victim
2. Run the victim and time it

• fast because data are in cache
3. Evict content from set Y (evict)

• by replacing with attacker content
• making sure to pollute all ways

4-way set-associative

8 sets

2
8

Evict+Time

Does the victim access location X (in set Y)?

1. Run the victim
2. Run the victim and time it

• fast because data are in cache
3. Evict content from set Y (evict)

• by replacing with attacker content
• making sure to pollute all ways

4. Run the victim and time it (time)
• if step 4 takes longer than 2, the victim

accessed something in set Y

4-way set-associative

8 sets

2
9

Evict+Time

• Problem
– Relies on measuring the precise execution time of the victim
– Repeats the same execution, so no variability in the executed code
– Yet, timing may be affected by environmental issues

• System call
• Branch prediction
• Instruction scheduling

– It is small noise but may be comparable to the quantity being
measured

– Repeat many times

3
0

Evict+Time

• Results affected by noise, but noise can usually be controlled by repeating
the experiment a sufficient number of times

Address tested for possible access

Byte of the
plaintext

So
ur

ce
: O

sv
ik

et
 a

l.,
 C

T-
RS

A’
06

3
1

Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and

time each set
• fast because data are in cache

4-way set-associative

8 sets

3
2

Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and

time each set
• fast because data are in cache

3. Run the victim

4-way set-associative

8 sets

3
3

Prime+Probe

What location (set) does the victim access?

1. Fill all sets with attacker content (prime)
2. Read all pieces of data for all sets and

time each set
• fast because data are in cache

3. Run the victim
4. Read all pieces of data for all sets and

time each set (probe)
• if step 4 takes longer than 2 for set Y, the

victim accessed something in set Y

4-way set-associative

8 sets

3
4

Prime+Probe

• Key advantage: now the attacker times their own code and not the
victim’s code, arguably allowing better control of measurement noise

Sets accessed

Byte of the
plaintext

So
ur

ce
: O

sv
ik

et
 a

l.,
 C

T-
RS

A’
06

3
5

Candidate Scores

• Many attacks to cryptographic algorithms involve trying multiple
plaintexts and/or key hypotheses and distinguishing between most likely
and least likely over many attempts

0x50…0x5f = 80…96 0x5…

Key hypothesis

Score

So
ur

ce
: O

sv
ik

et
 a

l.,
 C

T-
RS

A’
06

3
6

Cache Tag Index Offset

Cache Tag Index Offset

Cache Hierarchy

typ. 6b

L1

Last Level Cache

max 6b

typ. > 10b

What about Large Caches?

Virtual Page Offset

Physical Page Offset

Page tableVirtual Memory

typ. 12b

Virtual addresses
cannot control the

cache set to use
in caches larger than L1

3
7

Why an Attacker Cares about LLC?
• The attacker and the victim may be on different cores
• Also more index bits (= more sets) lead to better resolution (e.g., 1/2048 vs. 1/64)

Intel Nehalem

Inclusion

• Inclusion property
– Whatever is in L1D is certainly

in L2; whatever is in L2 is
certainly in L3, etc.

– Useful to maintain coherence

• In particular
– If the attacker evicts something

in L1D, it is evicted also in L2
and L3

Attacker
Victim

So
ur

ce
: h

tt
p:

//
re

al
w

or
ld

te
ch

.c
om

/,
©

 R
W

T
20

08

3
8

Huge Virtual Pages

• Takes advantage of the hardware support for large pages
– Large pages More memory waste but more efficient management (e.g., less TLB misses) in

applications with large data footprint

• Attacker needs administrator rights to set large pages
– Not a problem, because they have them in their guest OS

Cache Tag 11-bit Index Offset Last Level Cache

Page 12-bit Offset 4kB pages

Page 21-bit Offset

Page 30-bit Offset

2MB pages

1GB pages

6 bits

3
9

Prime+Probe and Multiple Levels

1. Fill set (prime)
2. Run the victim
3. Find misses (probe)

L1

1. Fill set (prime)
2. Run the victim
3. Find misses (probe)

LLC L1

1. Fill set in LLC (prime)
2. Fill set (= evict) in L1 (reprime)

• Do not evict from LLC!
3. Run the victim
4. Find misses (probe)

LLC L1

Cache Tag Index Offset LLC

Cache Tag Index Offset L1

6 bits

11 bits

Reprime with elements in the
same set in L1 but in a

different set in LLC

Differentiate L1 from LLC with these bits

Probe actually may probe
L1 instead of LLC

4
0

Asynchronous Attacker and Victim?

• The example is here a Flush+Reload
attack, similar to Prime+Probe but uses
the clflush instruction of x86 to evict a
specific cache line and depends on
virtual machine page deduplication (if
two users load the same executable or
libraries, only one is kept in memory)
– Attacker and victim use different virtual

addresses in different virtual machines,
but the physical address is the same

• Tracks accesses to code to infer the
internal state of the victim

The attacker runs in a virtual
machine and the victim in another
one, so no synchronization possible

So
ur

ce
: Y

ar
om

an
d

Fa
lk

ne
r,

U
SE

N
IX

 S
ec

ur
ity

 ’1
4

4
1

Asynchronous Attacker and Victim?

The execution sequence Square-Reduce-Multiply-Reduce
reveals the secret (the victim was processing a set bit)

So
ur

ce
: Y

ar
om

an
d

Fa
lk

ne
r,

U
SE

N
IX

 S
ec

ur
ity

 ’1
4

4
2

Possible Mitigations
• Huge amount of research

– Hardware solutions
• Various forms of partitioning and randomization
• Practically none is truly effective and efficient, and thus viable for general use

– Generic software solutions
• Clumsy, difficult to generalize, costly, not always effective
• Cache colouring  OS uses physical page allocation to reserve sets for some processes

– Application-specific solutions
• Possibly the safest option

Cache Tag Index Offset

Physical Page Page Offset

5 bits

Give a critical application only physical pages with a particular
combination of these bits (“colour”) and nobody else pages of that

colour, thus effectively partitioning the sets across applications

4
3

6
Combined Attacks to Break Isolation and Confidentiality

(Meltdown)

4
4

Meltdown

• Catastrophic attack making it possible to read all memory of a process
(including protected kernel data)

• By product of the way some microarchitectural features are implemented
(e.g., AMD x86 implementations are per chance resistant to Meltdown)

• Exploits race condition between memory access and protection checks
– Ultimately exploits the microarchitectural nature of caches (something is left in the

cache upon exception because the cache is not part of the architectural state)

The attacker executes a forbidden access and speculatively
uses the result to obtain nonarchitectural side-effects that
reveal the secrets before the forbidden access is squashed

4
5

Mapping Kernel Pages in User Space

• Most OSes map physical kernel memory pages into every user’s virtual
memory space

• Minimizes the cost of some exceptions (e.g., fast interrupt handling, less
TLB flushes)

• Of course, access is protected—can be read only in kernel mode
• But everyone can address them!

Kernel User Process A User Process B

Physical Memory

4
6

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

Attacker: *wherever;

We try to read anything
we want, provided that it
is mapped in our virtual

addressing space (but the
value will be removed
from the ROB and an

exception thrown)

4
7

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
secretAttacker:

Before the exception is
thrown something else will

be executed

4
8

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
array[secret * 4096];Attacker:

If we use the abusively loaded value
(secret) for a legitimate memory access,

trace of it will remain in the cache

4
9

Meltdown

execute a ① forbidden access
and ② speculatively use the result

with ③ nonarchitectural side-effects
that reveal the secrets

before the forbidden access is squashed

secret = *wherever;
array[secret * 4096];

Make sure that a secret the
attacker cannot read leaves
a trace before it is cancelled

Perform a
Prime+Probe
cache attack
to learn the

secret

Attacker:

Renamed register which
will never be committed

5
0

0
0
0
0
1

0

Register Address ValueTag

0x627f ba5a

FP3 ???

$r4

0x12340x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 0x123 40000x1000 0010

0 MEM3 ???0x1000 0018

head

0 0xf123 40000x1000 0014 $r3

$r3

$r3

$f3

$r9

The ROB View

0x1000000c: lw $r3, 0($r5)
0x10000010: sll $r3, $r3, 12
0x10000014: add $r3, $r3, $r6
0x10000018: lw $r4, 0($r3)

wherever
secret

array[]

The protection violation has
been discovered and is set to

raise soon an exception…

…yet the secret value is in the
ROB and has been used already

to affect the cache state

5
1

Does It Affect All Processors?

Processors Affected?
Intel x86 Most processors since 1995
AMD x86 None

ARM Cortex-A75
Apple ARM Most processors
IBM POWER POWER8 and POWER9

VIA x86 Most processors

5
2

Possible Mitigations
• The obvious proper solution is to change the processor design

– Test privilege level before making the result of a speculative access available
– Per chance, AMD does this already

• The other line of mitigation is to better isolate user space and kernel space memory
– In Linux, Kernel page-table isolation (KPTI); similar in other OSs
– Performance penalty in Linux around 5-10%, up to 30%

User space

Kernel space

User and kernel mode

User space

Kernel space

User mode

User space

Kernel space

Kernel mode

5
3

7
Combined Attacks to Break Isolation and Confidentiality

(Spectre)

5
4

Spectre

• Another catastrophic attack making it possible to read all memory
• Addresses another shared resource: branch predictors

– For simplicity, branch predictors are not thread specific (see also Simultaneous
Multithreading lecture)

• Exploits side effects of (mispredicted) speculative execution
– Mispeculation does not affect the architectural state (of course!)…
– …but it may affect microarchitectural structures (e.g., caches)

Get the victim to speculatively execute leaky code
whose nonarchitectural side-effects reveal the secrets

5
5

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

array1[x]Victim:

With an appropriate value
for x we can read
anything we want

5
6

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

array1[x]
if (x < array1_size)

array1[x]Victim:

If we can get the processor
to mispredict the condition,

the access will be speculatively performed
(but the value will be removed from the ROB)

5
7

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

if (x < array1_size)
y = array2[array1[x] * 4096];array1[x]

if (x < array1_size)
array1[x]Victim:

If we use the speculatively loaded value
(array1[x]) for a memory access, trace of

it will remain in the cache

5
8

Spectre

② speculatively execute
① leaky code

with ③ nonarchitectural side-effects
that reveal the secrets

if (x < array1_size)
y = array2[array1[x] * 4096];array1[x]

if (x < array1_size)
array1[x]Victim:

Force the
victim to

mispeculate
Perform a

Prime+Probe
cache attack
to learn the

secret

5
9

Possible Mitigations

• Hardware
– Disable speculative execution
– Separate branch predictors per process/thread

• General software approaches
– Run only an application per processor

• Partial and application-specific software approaches
– Add serialization instructions between branches and loads
– Make it impossible through JavaScript in browsers

“As [Spectre] is not easy to fix, it will haunt us for quite some time.”

https://meltdownattack.com/

6
0

Conclusions

• Large catalogue of powerful primitive attacks exploiting microarchitectural state
• Real attacks are a composition of primitives (A  B  C…)

• Fairly difficult to fight them comprehensively, without hardware support, and without
a serious loss of performance

Matryoshka
Dolls

6
1

References
General
• J. Szefer, Principles of Secure Processor Architecture Design, Synthesis Lectures on Computer Architecture, Morgan & Claypool,

2019

RowHammer
• M. Seaborn and T. Dullien, Exploiting the DRAM RowHammer Bug to Gain Kernel Privileges, Black Hat USA, August 2015

Cache Attacks
• D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and Countermeasures: the Case of AES, CT-RSA, February 2006
• Y. Yarom and K. Falkner, FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack, USENIX Security, August

2014
• G. Irazoqui, Th. Eisenbarth, and B. Sunar, S$A: A Shared Cache Attack that Works Across Cores and Defies VM Sandboxing—and its

Application to AES, IEEE S&P, May 2015

Meltdown and Spectre
• M. Lipp, M. Schwarz, D. Gruss, Th. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M.

Hamburg, Meltdown: Reading Kernel Memory from User Space, USENIX Security, August 2018
• P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, Th. Prescher, M. Schwarz, and Y.

Yarom, Spectre Attacks: Exploiting Speculative Execution, IEEE S&P, May 2019

	Advanced�Computer Architecture�—�Part III: Hardware Security�Microarchitectural Side-Channel Attacks
	Why Hardware Security?
	Outline of the Next Three Lectures
	Outline of This Lecture
	1
	Threat Model
	Classic Security Properties
	2
	Dynamic Random-Access Memory
	Apparently Only a Reliability Issue
	A Remarkably Simple Code
	An Opportunity for Attacks
	Mitigations
	An Aside on DRAMs: Data Remanence
	3
	Covert Channels
	Side Channels Attacks
	Covert- and Side-Channels
	Covert- and Side-Channels
	4
	Execution Time Reveals Something on Data
	Blinding through Constant Time
	5
	Cache Side-Channel Attacks
	Evict+Time
	Evict+Time
	Evict+Time
	Evict+Time
	Evict+Time
	Evict+Time
	Prime+Probe
	Prime+Probe
	Prime+Probe
	Prime+Probe
	Candidate Scores
	What about Large Caches?
	Why an Attacker Cares about LLC?�
	Huge Virtual Pages
	Prime+Probe and Multiple Levels�
	Asynchronous Attacker and Victim?
	Asynchronous Attacker and Victim?
	Possible Mitigations�
	6
	Meltdown
	Mapping Kernel Pages in User Space
	Meltdown
	Meltdown
	Meltdown
	Meltdown
	The ROB View
	Does It Affect All Processors?
	Possible Mitigations�
	7
	Spectre
	Spectre
	Spectre
	Spectre
	Spectre
	Possible Mitigations
	Conclusions
	References

